
1. (10 points) A function f(x, y) is defined by f(x, y) =
x3

x2 + y2
at (x, y) 6= 0

and f(0, 0) = 0. Prove that f(x, y) is continuous at (0, 0).

Proof. Given ε > 0, if ‖(x, y)‖ < ε then for (x, y) 6= (0, 0)

|f(x, y)− f(0, 0)| = |x|3

x2 + y2
≤ (x2 + y2)

3
2

x2 + y2
=
√
x2 + y2 = ‖(x, y)‖ < ε.

Namely, f(x, y) is continuous at (0, 0). �
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2. (10 points) Let T3(x) be the third order Taylor polynomial of

f(x) =
x2

5− x
centered at 0. Prove that |f(x)− T3(x)| < .01 for |x| < 1.

If you use the remainder term (11) in pp.235, then you may obtain

|f(x)− T3(x)| < 25

45
=

25

1024
< .0245.

In this case, you can get at most 8 points.

Proof. We have

f(x) =
x2

5− x
=

25− (25− x2)
5− x

=
25

5− x
− (x+ 5).

Hence,

f ′(x) =
25

(5− x)2
− 1, f ′′(x) =

25 · 2!

(5− x)3
, f (3)(x) =

25 · 3!

(5− x)4
.

Therefore,

T3(x) =
x2

5
+
x3

25
.

Hence,

f(x)− T3(x) =
x2

5− x
− x2

5
− x3

25
=

5x2 − x2(5− x)

5(5− x)
− x3

25

=
x3

5(5− x)
− x3

25
=

5x3 − x3(5− x)

25(5− x)
=

x4

25(5− x)
.

So, for |x| < 1 the following holds

|f(x)− T3(x)| = |x|4

25(5− x)
<

1

25(5− x)
<

1

25(5− 1)
=

1

100
.

�
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3. (15 points) Prove that

∫ ∞
0+

(sinx)2

x2
dx converges.

(Fact: sinx is continuous and lim
x→0+

sinx

x
= 1.)

Proof. The condition lim
x→0+

sinx

x
= 1 implies that there exists δ > 0 such

that
∣∣∣sinx
x
− 1
∣∣∣ < 1 holds for x ∈ (0, δ). Namely,

∣∣∣sinx
x

∣∣∣ < 2 for x ∈ (0, δ).

Since
∫ δ
0+ 4dx converges to 4δ, by the comparison theorem

∫ δ

0+

(sinx)2

x2
dx

converges.

Next, we can observe
(sinx)2

x2
≤ 1

x2
. Moreover, we have

lim
t→+∞

∫ t

δ

1

x2
dx = lim

t→+∞

−1

x

∣∣∣t
δ

= lim
t→+∞

−1

t
+

1

δ
=

1

δ
,

namely

∫ ∞
δ

1

x2
dx converges. Hence, the comparison theorem implies the

convergence of

∫ ∞
δ

(sinx)2

x2
dx. Hence,

∫ ∞
0+

(sinx)2

x2
dx converges.

�
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4. (25 points) Prove that f(x) =

∞∑
n=1

1

n2x2 + x
is continuous but not uni-

formly continuous on (0, 1].

Proof. First of all, the functions un(x) = (n2x2 + x)−1 are continuous on
(0, 1] by Theorem 11.4C.

Given an interval [r, 1] ⊂ (0, 1], we have

|un(x)| ≤ 1

n2x2 + x
<

1

n2x2
≤ 1

n2r2
.

Moreover,
∑∞

n=1
1

n2r2
converges, because

∑∞
n=1

1
n2 . Hence, Theorem 22.2B

guarantees the uniform convergence of
∑
un(x) on [r, 1]. Therefore, f(x) is

continuous by Theorem 22.3.

Now, we assume that f(x) is uniformly continuous on (0, 1]. Then,
{f(an)} is a Cauchy sequence if {an} ⊂ (0, 1] is a Cauchy sequence. (See the
practice pset or pset 5.) Since { 1n} converges to 0, it is a Cauchy sequence.

Therefore, {f( 1
n)} is a Cauchy sequence, and thus it converges.

However,
n∑
k=1

uk

( 1

n

)
=

n∑
k=1

(k2
n2

+
1

n

)−1
≥

n∑
k=1

(n2
n2

+
1

n

)−1
=

n

1 + 1
n

.

Moreover, ui(
1
n) > 0 implies

n

1 + n−1
≤

n∑
k=1

uk

( 1

n

)
≤

m∑
k=1

uk

( 1

n

)
,

for all m ≥ n. Thus, the limit location theorem leads to n
1+n−1 ≤ f( 1

n).

Namely, f( 1
n) tends to the infinity, and thus diverges. �
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5. (20 points) We define a function f on R2 by f(x, y) = x sin
(
− 1

x2 + y2

)
at (x, y) 6= (0, 0), and f(0, 0) = 0. Prove that following.

(a) f(x, y) is continuous at (0, 0). (Thus, it is continuous on R2.)
(b) f(x, y) is uniformly continuous on R2.

(You can use the fact that f(x, y) is continuous on R2 \ {(0, 0)}. Also, you
can use the fact that sin t is differentiable and (sin t)′ = cos t.)

Basically, it is the same to the problems 8 in the practice pset. Reading
the proof, it would be good to draw the regions S1, S2 and the lines of the
integrals.

Proof. Given ε > 0, if (x, y) 6= (0, 0) and ‖(x, y)‖ < ε then

|f(x, y)− f(0, 0)| ≤ |x| ≤
√
x2 + y2 = ‖(x, y)‖ < ε,

namely f(x, y) is continuous at (0, 0). Thus, f(x, y) is continuous on R2.

Next, we define S1 = [−2, 2]2 = {(x, y) : |x| ≤ 2, |y| ≤ 2}. Then, S1 is
a compact set by Theorem 24.6. Therefore, f(x, y) is uniformly continuous
on S1 by Theorem 24.7C.

We also define S2 = R2 \ [−1, 1]2 = {(x, y) : max(|x|, |y|) ≥ 1}. Given
x ∈ R, we define gx(y) = f(x, y). Then, at (x, y) ∈ S2 we have

|g′x(y)| =
∣∣∣∣ 2xy

(x2 + y2)2
cos
(
− 1

x2 + y2
)∣∣∣∣ ≤ 2xy

(x2 + y2)2
≤ 1

x2 + y2
≤ 1

max(x2, y2)
≤ 1.

Similarly, we define hy(x) = f(x, y). Then at (x, y) ∈ S2 we have

|h′y(x)| ≤
∣∣∣∣ sin (− 1

x2 + y2
)∣∣∣∣+

∣∣∣∣ 2x2

(x2 + y2)2
cos
(
− 1

x2 + y2
)∣∣∣∣

≤ 1 +
2

x2 + y2
≤ 1 +

2

max(x2, y2)
≤ 3.

Given ε > 0, if (x1, y1), (x2, y2) ∈ S2 and ‖(x1, y1)−(x2, y2)‖ < 1
10 min(ε, 1),

then we have |x1 − x2|, |y1 − y2| < 1
10 min(ε, 1).

We may assume |x1| ≥ |y1| and |x2| ≥ |y2|. Then, we have x1, x2 ≥ 1
because of |x1 − x2| ≤ 1

10 and |x1|, |x2| ≥ 1. Thus, the FTC implies

|f(x1, y1)− f(x1, y2)| = |gx1(y1)− gx1(y2)| =
∣∣∣ ∫ y2

y1

g′x1(y)dy
∣∣∣

≤
∫ max(y1,y2)

min(y1,y2)
|g′x1(y)|dy ≤

∫ max(y1,y2)

min(y1,y2)
dy = |y1 − y2| <

ε

4
,
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because we have (x1, y) ∈ S2 for y ∈ R by x1 ≥ 1. Also,

|f(x1, y2)− f(x2, y2)| = |hy2(x1)− hy2(x2)| =
∣∣∣ ∫ x2

x1

h′y1(x)dx
∣∣∣

≤
∫ max(x1,x2)

min(x1,x2)
|h′y1(x)|dx ≤

∫ max(x1,x2)

min(x1,x2)
3dy = 3|x1 − x2| <

3ε

4
,

namely |f(x1, y1)− f(x2, y2)| < ε.
In the case |y1| ≥ |x1| and |y2| ≥ |x2|, one can obtain |f(x1, y1) −

f(x2, y2)| < ε in the same manner.
In the case |x1| ≥ |y1| and |y2| ≥ |x2|, one can obtain

|f(x1, y1)− f(x2, y2)| ≤ |gx1(y1)− gx1(y2)|+ |hy2(x1)− hy2(x2)| ≤ ε.
In the case |y1| ≥ |x1| and |x2| ≥ |y2|, one can obtain

|f(x1, y1)− f(x2, y2)| ≤ |hy1(x1)− hy1(x2)|+ |gx2(y1)− gx2(y2)| ≤ ε.
Hence, f(x, y) is uniformly continuous on S2.

In conclusion, given ε > 0 there exist δ1, δ2 > 0 such that |f(x1, y1) −
f(x2, y2)| < ε holds if ‖(x1, y1) − (x2, y2)‖ < δi and (x1, y1), (x2, y2) ∈ Si
for each i = 1, 2. We now define δ = min(δ1, δ2,

1
10) and assume ‖(x1, y1)−

(x2, y2)‖ < δ. Then, we have (x1, y1), (x2, y2) ∈ S1 or (x1, y1), (x2, y2) ∈ S2.
Thus, |f(x1, y1)− f(x2, y2)| < ε, namely f(x, y) is uniformly continuous.

�

When you study the Cauchy integral in Complex Analysis, it would be
good to compare with this problem.

The Cauchy integral is much more elegant.
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6. (20 points) Let f(x, y) be a continuous function on R2 such that

lim
‖(x,y)‖→+∞

f(x, y) =
x√

x2 + y2
.

Prove that f(x, y) is bounded on R2.

Proof. There exists R > 0 such that∣∣∣∣f(x, y)− x√
x2 + y2

∣∣∣∣ ≤ 1,

holds for ‖(x, y)‖ > R. Namely,

|f(x, y)| ≤
∣∣∣∣f(x, y)− x√

x2 + y2

∣∣∣∣+

∣∣∣∣ x√
x2 + y2

∣∣∣∣ ≤ 2,

holds for ‖(x, y)‖ > R.

Next, K = {(x, y) : x2 + y2 ≤ R2} is a compact set by Theorem 25.1B.
Thus, f(x, y) attains its maximum M1 and minimum M2 on K by Theorem
24.7B. Hence, we have M2 ≤ f(x, y) ≤M1 on K, namely |f(x, y)| ≤ |M1|+
|M2| on K.

In conclusion,

|f(x, y)| ≤ |M1|+ |M2|+ 2,

holds for (x, y) ∈ R2. �
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7. (20 points) Determine whether the following statements are true or false.
If false then provide a counterexample. You do not need to verify your
answer.

(1) A infinitely many times differentiable function is a analytic function.

Proof. F: f(x) = e−
1
x at x > 0 and f(x) = 0 for x ≤ 0. Then, its Taylor

series at 0 is 0 6= f(x). �

(2) Let {Un}n∈N be a sequence of open sets in R2. Then, the intersection
∩∞n=1Un is an open set in R2.

Proof. F: Un = {(x, y) : x2 + y2 < 1
n2 } are open sets, but ∩∞n=1Un = {(0, 0)}

is a closed set. �

(3) Let f(x, y) be a continuous function defined on R2. Then, f(x, y) has
the maximum on the set S = {(x, y) : x2 ≤ 1,−1 ≤ x+ y ≤ 1}.

Proof. T: You can draw the set S and simply check that S is contained the
unit disk. Hence, S is bounded. Also A = {x2 ≤ 1}, B = {x+ y ≥ 1}, and
C = {x + y ≤ 1} are closed by Theorem 25.1B. Thus, S = A ∩ B ∩ C is
closed. Thus, Theorem 25.2 implies that S is compact. So, f(x, y) has the
maximum on S by Theorem 24.7B. �

(4) Let f(x, y) be a continuous function on R2 such that

lim
‖(x,y)‖→+∞

f(x, y) =
x√

x2 + y2
.

Then, f(x) attains its maximum or minimum on R2.

Proof. F: f(x) = 2x

π
√
x2+y2

arctan(x2 + y2) at (x, y) 6= (0, 0) and f(0, 0) = 0.

If you don’t like arctan, you can replace it by any continuous function
g(x2 + y2) such that |g(r)| < 1, g(0) = 0, and g(r)→ 1 as r → +∞. �
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(5) Assume that f(x) is a uniformly continuous function defined on [1,+∞).

Then,
f(x)

x
is bounded on [1,+∞).

Proof. T: There exists δ > 0 such that |f(x) − f(y)| < 1 if |x − y| ≤ δ and
x, y ≥ 1. Then, given x ≥ 1, there exists a natural number m such that
1 + (m− 1)δ ≤ x < 1 +mδ. So, we have

|f(x)− f(1)| ≤|f(x)− f(1 + (m− 1)δ)|+
m−1∑
k=1

|f(1 + kδ)− f(1)|

≤1 +
m−1∑
k=1

1 = m.

Thus, x < 1 +mδ yields

|f(x)| ≤ |f(1)|+ |f(x)− f(1)| ≤ |f(1)|+m < |f(1)|+ 1

δ
(x− 1) < |f(1)|+ x

δ
.

Hence, for x ≥ 1

|f(x)|
x
≤ |f(1)|

x
+

1

δ
≤ |f(1)|+ 1

δ
.

�

Remind that differentiable functions with bounded derivatives are uni-
formly continuous. But the uniform continuity does not imply the bound-

edness of the derivative. However, the boundedness of f(x)
x implies that the

slope of f(x) is bounded in ”large scale”.

(6) If
∫ 1
0 f(x)dx and

∫ 1
0 g(x)dx converge, then

∫ 1
0 f(x)g(x)dx converges.

Proof. F: f(x) = g(x) = 1√
x
. �
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8. (20 points, bonus problem) Let Γ = {(x, y) ∈ R2 : x2 + y2 = 1} denote
the unit circle.

We call a subset U ⊂ Γ relatively open if there exists an open set Ū ⊂ R2

such that U = Γ∩ Ū . Also, a subset V ⊂ Γ is relatively closed if there exists
a closed set V̄ ⊂ R2 such that V = Γ ∩ V̄ .

Prove that if a non-empty subset A ⊂ Γ is relatively open and closed,
then A = Γ.

Proof. To begin with, we observe that Γ = {(cos θ, sin θ) : θ ∈ R}. We define
a set Θ = {θ ∈ R : (cos θ, sin θ) ∈ A}. Since A is a non-empty set, we may
assume 0 ∈ Θ without loss of generality.

Next, by definition of the relatively open sets, there exists an open set
Ū ∈ R2 such that A = Ū ∩ Γ. Thus, (1, 0) = (cos 0, sin 0) ∈ A ⊂ Ū . Hence,
by definition of the open sets in R2, there exists ε > 0 such that the open
ball Bε((1, 0)) is contained in Ū . Therefore, Bε((1, 0)) ∩ Γ = Ū ∩ Γ = A.

On the other hand,

‖(1, 0)− (cos θ, sin θ)‖ =
√

(1− cos θ)2 + (sin θ)2

=
√

2− 2 cos θ = 2| sin(θ/2)|.
Since lim

θ→0
2 sin(θ/2) = 0, there exists δ > 0 such that 2| sin(δ/2)| < ε holds

for |θ| ≤ δ. Namely, (cos θ, sin θ) ∈ Bε((1, 0)) holds for θ ∈ [0, δ]. Therefore,
we have [0, δ] ⊂ Θ.

Now, we can define a set S = {s ∈ [0,+∞) : [0, s] ⊂ Θ}. Then, it is a
non-empty set because of δ ∈ S. If there exists some s ∈ S with s ≥ 2π,
then we have [0, 2π] ⊂ [0, s] ⊂ Θ. Namely, we have the desired result A = Γ.

Thus, we may assume that s < 2π holds for all s ∈ S, namely 2π is an
upper bound for S. By the completeness theorem, s̄ = supS exists.

If s̄ ∈ S then s̄ ∈ [0, s̄] ⊂ Θ. Thus, (cos s̄, sin s̄) ∈ A. Then, there exists
some δ′ > 0 such that [s̄, s̄ + δ′] ⊂ Θ as like the previous argument. Then,
we have [0, s̄+ δ] = [0, s̄]∪ [s̄, s̄+ δ′] ⊂ Θ, namely s̄+ δ′ ∈ S. Contradiction.

We assume that s̄ 6∈ S. By the problem 9 in the pset 2, there exists a
sequence {sn} ⊂ S such that lim sn = s. Since s̄ 6∈ S, we have sn 6= s.

Now, we let V̄ be the closed set in R2 with A = V̄ ∩ Γ. Then,

(sin sn, cos sn) ∈ A ⊂ V̄ , lim
n→+∞

(sin sn, cos sn) = (sin s̄, cos s̄).

Thus, (sin s̄, cos s̄) is a cluster point of the closed set V̄ , and (sin s̄, cos s̄) ∈
V̄ ∩ Γ = A. So, s̄ ∈ Θ. However, we have

[0, s̄) = ∪∞n=1[0, sn] ⊂ Θ.

Thus, [0, s̄] = {s̄} ∪ [0, s̄) ⊂ Θ, namely s̄ ∈ S. Contradiction.
�


